Optimization
Lehrveranstaltungen | Kontaktzeit | Selbststudium |
Vorlesung | 4 SWS/60 h | |
Übung | 1 SWS/15 h | |
Leistungspunkte | 9 | |
Workload | 75 h | 195 h |
Lernergebnisse/ Kompetenzen
The students know fundamental methods and algorithms for optimization problems. They are able to
model small real-world problems and to apply optimization techniques to solve those problems. The students broaden their analytical and problem-solving skills. They are able to acquire, adapt and apply current research results.
Inhalte
E.g.: Linear programs in standard form, fundamental theorem of linear optimization, Simplex-method,
duality theorem, degenerate problems, inner point methods, optimality conditions for unconstrained and
constrained problems, one-dimensional minimization; direct methods, descent methods in higher dimensions, cg-methods, basics of graph theory, optimization on graphs, methods of integer optimization.
Bemerkung
Die Übung kann durch ein Seminar ersetzt werden und hat dann ein Gruppengröße von 15 Teilnehmern.
Studiensemester: 1., 2. oder 3. Semester
Modulbeauftragter: Ruzika
Lehrende: Ruzika
Voraussetzungen (inhaltlich) Extended Knowledge in linear algebra, analysis and numerics and
stochastics. Basis knowledge in mathematical modeling.
Turnus: Sommersemester
Sprache: Englisch
Standort: Campus Koblenz