Applied Differential Equations
Lehrveranstaltungen | Kontaktzeit | Selbststudium |
Vorlesung | 4 SWS/60 h | |
Übung | 1 SWS/15 h | |
Leistungspunkte | 9 | |
Workload | 75 h | 195 h |
Lernergebnisse/ Kompetenzen
The students know the fundamental definitions, theorems and methods related to the theory and numerical methods for differential equations. Applying known results from calculus, linear algebra and numerics, the can tackle advanced problems, analyze them mathematically and solve them numerically.
The students broaden their analytical and problem-solving skills. They are able to acquire, adapt and
apply current research results.
Inhalte
E.g.: Elementary methods for initial value problems of ordinary differential equations, existence and uniqueness results for initial value problems, qualitative behaviour and stability, linear first and higher
order systems of differential, one-step methods for inital value problems, consistency and convergence,
Runge-Kutta methods and adaptive stepsize selection, classification of partial differential equations and
elementary cases.
Bemerkung
Die Übung kann durch ein Seminar ersetzt werden und hat dann ein Gruppengröße von 15 Teilnehmern.
Studiensemester: 1., 2. oder 3. Semester
Modulbeauftragter: Götz
Lehrende: Götz
Voraussetzungen (inhaltlich) Extended Knowledge in linear algebra, analysis and numerics
Turnus: Wintersemester
Sprache: Englisch
Standort: Campus Koblenz