Legende	SL: Studienleistung; PVL: Prüfungsvorleistung; PL: Prüfungsleistung				
Leistungsnachweis	-	-	-	PL	150
Selbststudium	0	30	0	60	90
Präsenzzeit	30	29	Ó	1	60
Arbeitszeiten	Vorlesung	Übung	Projekt	Prüfung	Summe
Studiengang	MA Bauing				
Credits	5 CP				
Lehrform	2 SWS Vorlesung, 2 SWS EDV-Übung				
Termin	Sommer; Dauer: 15 Wochen				
Vorkenntnisse	MATH-3				
Modulverantwortung	Prof. DrIng. Bogacki				
Modulsprache	Deutsch				
Kurzbeschreibung	Numerische Methoden und deren Programmierung				
Lehrveranstaltung	MATH-5 - Numerische Methoden				

Lernergebnisse (Learning outcomes):

Nach der Teilnahme an den Modulveranstaltungen sind die Studierenden in der Lage:

- Die Genauigkeit numerischer Verfahren zu beurteilen
- Numerische Methoden anzuwenden
- hierzu die Programmiersprache "R" einzusetzen
- numerische Methoden zur Lösung von Aufgaben im Bauwesen anzuwenden

<u>Fachkompetenz – Kenntnisse:</u>

Es werden anhand von Beispielen aus dem Bauwesen Kenntnisse zu den folgenden Themengebieten vermittelt:

- Grundlagen der Gleitkommazahlarithmetik und deren Fehlerquellen
- Grundlagen der linearen Algebra (Matrizen, lineare Gleichungssysteme)
- Grundlagen der numerischen Differentiation und Integration
- Grundlagen der numerischen Lösung von gewöhnlichen Differentialgleichungen

Fachkompetenz – Fertigkeiten:

Es sollen die folgenden Fertigkeiten zur Lösung von Aufgabenstellungen in der Berufspraxis des Bauwesens erworben werden:

- Programmierung von Algorithmen zur Nullstellenermittlung
- Programmierung von Funktionen zur numerischen Differentiation
- Programmierung der Quadraturformeln zur numerischen Integration
- Programmierung von Algorithmen zur numerischen Lösung von gewöhnlichen Differentialgleichungen
- Programmierung von Algorithmen zur Lösung von linearen Gleichungssystemen
- Anwendung der Programmiersprache "R" zur Implementierung numerischer Algorithmen

Weitere Kompetenzebenen:

Neben der Fachkompetenz sollen mit dem Ziel eines selbständigen und verantwortungsvollen Handelns im beruflichen Kontext auf den folgenden Kompetenzebenen Kenntnisse, methodische Fähigkeiten und Fertigkeiten erworben werden:

- Analysekompetenz:
 - o Übertragung praktischer Fragestellungen in mathematische Modelle
 - Zerlegung komplexer Fragestellungen in Teilschritte
 - Logisches Denken und Argumentation
 - o Kritische Beurteilung von numerischen Berechnungsergebnissen
- Allgemeine Methodenkompetenz:
 - Auswahl geeigneter Algorithmen zur numerischen Umsetzung mathematischer Methoden
 - o Kenntnis der symbolischen Notationen in der numerischen Mathematik
 - o Beherrschung einer Programmiersprache
- Anwendungskompetenz:
 - o Einsatz numerischer Methoden in der beruflichen Praxis des Bauwesens

Voraussetzungen für die Vergabe von Creditpoints

Bestandene Prüfungsleistung in Form einer semesterbegleitenden Übung und einer benoteten Hausarbeit mit Präsentation.

Literatur

Matloff, N.: The Art of R Programming. No Starch Press, San Francisco

Schwarz, H. R.: Numerische Mathematik. Teubner, Stuttgart.

Zurmühl, R.; Falk,S.: Matrizen und ihre technischen Anwendungen, Teil 1: Grundlagen. Springer, Berlin – Heidelberg – New York – Tokio

Unterrichtsmaterial

Vorlesungsmanuskript, Übungsbeispiele, Rechner/Softwarepaket R