Lehrveranstaltung	HYGE - Einführung in Grundwasserhydrologie				
Kurzbeschreibung	Grundwasserhydrologie und -modellierung, MODFLOW				
Modulsprache	Deutsch				
Modulverantwortung	DrIng. Taiseer Aljazzar				
Vorkenntnisse	_				
Termin	Winter; Dauer: 15 Wochen				
Lehrform	2 SWS Vorlesung, 2 SWS EDV-Übung				
Credits	5 CP				
Studiengang	MA Bauing				
Arbeitszeiten	Vorlesung	Übung	Projekt	Prüfung	Summe
Präsenzzeit	30	29	0	1	60
Selbststudium	0	30	0	60	90
Leistungsnachweis	-	-	-	PL	150
Legende	SL: Studienleistung; PVL: Prüfungsvorleistung; PL: Prüfungsleistung				

<u>Lernergebnisse</u> (<u>Learning outcomes</u>):

Nach der Teilnahme an den Modulveranstaltungen sind die Studierenden in der Lage:

- Grundlegenden Prozesse des hydrologischen Kreislaufes und der Grundwasserhydraulik zu verstehen
- Berechnungen zur Brunnenhydraulik durchzuführen
- Aquifer-Parameter aus Brunnentests zu bestimmen
- MODFLOW zur Berechnung komplexer, großräumiger hydrogeologischer Fragestellungen einsetzen

<u>Fachkompetenz – Kenntnisse:</u>

Es werden anhand von Beispielen aus dem Bauwesen Kenntnisse zu den folgenden Themengebieten vermittelt:

- Wasserkreislauf (global und lokal) und die Bedeutung des Grundwassers
- Grundwasserneubildung und Infiltration
- Arten und hydraulische Kennwerte von Aquiferen
- Darcy'sche Fließgesetz und Grundwasserströmungsleichung
- Pumpversuche und Bestimmung der hydraulischen Kennwerte
- Grundlagen der Brunnenhydraulik
- Grundlagen des Stofftransports im Grundwasser

Fachkompetenz – Fertigkeiten:

Es sollen die folgenden Fertigkeiten zur Lösung von Aufgabenstellungen in der Berufspraxis des Bauwesens erworben werden:

- Berechnung der Brunnenabsenkung
- Ermittlung von hydraulischen Kennwerten aus Pumpversuchen
- Großräumige Grundwassermodellierung mit MODFLOW

Weitere Kompetenzebenen:

Neben der Fachkompetenz sollen mit dem Ziel eines selbständigen und verantwortungsvollen Handelns im beruflichen Kontext auf den folgenden Kompetenzebenen Kenntnisse, methodische Fähigkeiten und Fertigkeiten erworben werden:

- Allgemeine Methodenkompetenz:
 - o Übertragung praktischer Fragestellungen in ein numerisches Modell
 - o Datenbeschaffung (für hydrogeologische Fragestellungen)
 - o Kritische Behandlung von Messdaten (Plausibilität, Lücken, ...)
 - o Kritische Analyse von Modellergebnissen

Voraussetzungen für die Vergabe von Creditpoints

Bestandene Prüfungsleistung in Form einer benoteten Hausarbeit und Präsentation.

Literatur

Hölting, B. und Coldewey, W. G.: Hydrogeologie: Einführung in die Allgemeine und Angewandte Hydrogeologie

Langguth, H.-R. und Voigt, R.: Hydrogeologische Methoden

Fetter, C.W.: Applied Hydrogeology

Unterrichtsmaterial

Vorlesungsmanuskript, Übungsbeispiele, Programmpacket MODFLOW