Lehrveranstaltung	BSTK-1 - Betontechnologie/Bauchemie				
Modulsprache	Deutsch				
Modulverantwortung	Prof. DrIng. M. Breitbach				
Vorkenntnisse	Grundlagen Mathematik, Physik, Chemie				
Termin	Winter und Sommer; Dauer: 15 Wochen				
Lehrform	3 WS Vorlesung; 1 WS Übung				
Credits	5 CP				
Studiengang	BA Bauing, BA BauWing, BA Wasserbau/Bauing, BIBING				
Arbeitszeiten	Vorlesung	Übung	Seminar	Prüfung	Summe
Präsenzzeit	43	8	8	1	60
Selbststudium	43	31	16	0	90
Leistungsnachweis	-	-	SL	PL	150
Legende	SL: Studienleistung; PL: Prüfungsleistung				

Lernergebnisse (Learning outcomes):

Nach der Teilnahme an den Modulveranstaltungen sind die Studierenden in der Lage:

- Baustoffe hinsichtlich ihrer Ausgangsstoffe, Herstellverfahren und chemischen Zusammensetzungen zu beurteilen und eine sachgerechte Auswahl zu treffen,
- Baustoffe hinsichtlich ihrer bauchemischen und physikalischen Eigenschaften zu beurteilen und deren Qualität zu überprüfen,
- Zementgebundene Baustoffe (insbesondere Beton) für spezifische Anwendungen (Expositionsklassen) sachgerecht zu entwerfen und deren Anforderungen und Qualität zu überprüfen,
- chemische und physikalische Hintergründe für spezifische Anwendungen zu begründen und zu optimieren,
- Beton für seine baupraktischen Anwendungen auf Baustellen zu entwerfen.

Fachkompetenz – Kenntnisse:

Das Ergebnis der Verarbeitung von Information durch Lernen. Kenntnisse bezeichnen die Gesamtheit der Fakten, Grundsätze, Theorien und Praxis im beschriebenen Arbeitsbereich.

Theorie- und/oder Faktenwissen:

- Zusammenhang zwischen den Regelwerken,
- Kenntnisse zu den Ausgangsstoffen (Herstellung, Eigenschaften, Anwendungen),
- Fähigkeiten Betone zusammenzusetzen (Stoffraumrechnung) und deren Eigenschaften zu beurteilen,
- Rezepturen zu beurteilen (Hydratationswärme, Schwinden, Rissbildung).

<u>Fachkompetenz – Fertigkeiten:</u>

Die Fähigkeit, Kenntnisse anzuwenden, um Aufgaben auszuführen und Probleme zu lösen:

- Auswahl, Konzeption und Anwendung von geeigneten Prüfungen zu Baustoffkenngrößen und deren Konformität als Ergebnis von Experimentalvorlesungen und Übungen,
- Anwendung von zementgebundenen Baustoffen als Ergebnis des projektbezogenen Semminars,
- Auswahl und spezifische Anwendung von Beton nach EC 2 und den nachgeordneten Regelwerken.

Weitere Kompetenzebenen:

Die nachgewiesene Fähigkeit, Kenntnisse, Fertigkeiten sowie persönliche, soziale und methodische Fähigkeiten in Arbeitssituationen und für die berufliche und/oder persönliche Entwicklung im Sinne der Übernahme von Verantwortung und Selbstständigkeit zu nutzen.

- Allgemeine Methodenkompetenz:
 - Beherschung der Fachsprache (terminus technicus) für Baustoffe und Baupraxis
 - Beherrschung des spezifischen Rechts- und Normungswesens
 - Bauchemische- und bauphysikalische Grundlagen zu Transportvorgägen und Wechselwirkungen
 - Problemanalyse und –lösung bzw. erarbeiten von Optimierungsprozessen
 - o Interdiziplinäres Arbeiten Schnittstellendefinitionen
- Sozialkompetenz:
 - o Formulieren und Zusammenfassen der Aufgabenstellung / des Problems
 - o Formulieren und Zusammenfassen des Lösungsweges
 - Kritische Reflexion des Lösungsweges in der Gruppe
 - o Interdiziplinäres Arbeiten als Gruppenprozess
- Selbstkompetenz:
 - o Entwickeln einer "Planung der Planung" Zeitmanagement
 - o Erkennen zeitlich kritischer Pfade
 - Bewertung / Reflexion der eigenen Planung und den Gesichtspunkten der Nachhaltigkeit bzw. Zukunftsfähigkeit

Voraussetzungen für die Vergabe von Creditpoints

Bestandene Studien- und Prüfungsleistung

Literatur

Präsenzliteratur in der Hochschulbibliothek, Betontechnische Daten.

Unterrichtsmaterial

Vorlesungsmanuskript, Übungsbeispiele, Demonstrationsvideos, bildunterstützte Praxisbeispiele, Simulationsprogramme, www. Perinorm.com