Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz | Semester | Modulcode | Description of Module | Responsible | CP | Examination (PL) | Content | |----------|-----------|-----------------------|-------------|----|------------------|---------| | | | | | | or/and Project | | | | | | | | achievement (SL) | | #### **General Modules** | Winter | GEO - 3 | Selected chapters of
Geotechnical Engineering | Prof. Quarg-
Voncheidt | 5 | PL | Deep excavations and earth retention systems slurry wall and Diaphragm wall design Analysis of Soil nailings Pile foundation design | |--------|---------|--|----------------------------|---|-----------|--| | Winter | FEMG | Finite Element Methods | Prof. Bogacki | 5 | PL | Development of governing differential equations
(groundwater flow) Numerical solution by weighed residuals & finite element
approach Practical application with FEFLOW | | Summer | GEOS | Geotechnical Engineering in road construction | Prof. Quarg-
Vonscheidt | 5 | SL and PL | soil reinforcement methods mechanical Behavior of Geosynthetics for soil reinforcements Tunnelling and Underground Construction Tunnel equipment for traffic | | Winter | GEOW | Geotechnical Engineering in water construction | Prof. Quarg-
Vonscheidt | 5 | SL and PL | principles of Groundwater Flow embankment stabilization and slope stability numerical Modelling of Soils and Structures evaluating Soil Liquefaction Potential | | Winter | MATH 3 | Higher mathematics | Prof. Bogacki | 5 | PL | Linear algebraPartial differentiationDifferential equations | | Winter | MATH 4 | Statistical Methods | Prof. Bogacki | 5 | PL | Sample analysis | PL – Examination (written) according to $\S\ 7$ SL – Course achievement according to § 8.4 CP – Credit Points **Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz** | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL)
or/and Project
achievement (SL) | Content | |----------|-----------|-----------------------------|---------------|----|--|--| | Summer | MATH 5 | Numerical methods | Prof. Bogacki | 5 | PL | Selected distribution functions Comparative statistics Application of R statistical language Numerical differentiation Numerical integration Linear equation solver Programming with R | | | MWIP 1* | Scientific research project | | 5 | PL | Workload: 150 SWS | | | MWIP 2* | Scientific research project | | 10 | PL | Workload: 300 SWS | | | MWIP 3* | Scientific research project | | 15 | PL | Workload: 450 SWS | #### Focus on construction operation | Winter | BBET-4 | Construction operation 4: Price finding | Prof. Engler | 5 | PL | financial accounting at construction firms cost and performance accounting at construction firms calculation methods and calculation of construction prices partial costs, full costs | |--------|--------|---|--------------|---|----|--| | | | | | | | computerised calculation | | Summer | BBET-5 | Construction operation 5: | Prof. Engler | 5 | PL | project organization | | | | Project management | | | | project course | | | | | | | | quality assurance | | | | | | | | time scheduling | | | | | | | | cost controlls | | | | | | | | documentation | PL – Examination (written) according to § 7 SL – Course achievement according to § 8.4 CP – Credit Points **Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz** | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL)
or/and Project
achievement (SL) | Content | |----------|-----------|--|----------------|----|--|---| | Summer | BBET 6 | Construction operation 6:
Claim Management | Prof. Engler | 5 | PL | additional quantity, under quantity and contract price adjustments variation order and contract price adjustments obstruction, delay, calculation of extensions of time contract termination and remuneration acceleration of construction progresses and remuneration documentation of modifications resolution of conflicts | | Winter | BBET 7 | Construction operation 7:
Tender Procedure and law | Prof. Krudewig | 5 | PL | Awarding of building contracts and building law Concept of contracting authority Bidder legal protection Legal bases of land use planning Building permit process | | Winter | PROM 1 | Project Management 1: Management structures in building companies | Prof. Krudewig | 5 | SL and PL | Legal forms of enterprises Organization of companies Corporate governance Controlling Human resources development Marketing Team formation, work assignments, scheduling Monitoring and supervision of projects | | Summer | PROM 2 | Project Management 2:
Site Management | Prof. Krudewig | 5 | SL and PL | Work preparation Scheduling Construction phase | PL – Examination (written) according to § 7 SL – Course achievement according to § 8.4 CP – Credit Points **Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz** | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL)
or/and Project
achievement (SL) | Content | |----------|-----------|--|------------------------------|-----|--|---| | Summer | PROM 3 | Project Management 3:
Principles of leadership | Prof. Krudewig | 2,5 | SL | Invoice verification Settlement statement and performance evaluation ARRIBA ® build-billing after REB 23.003 Claims Construction documentation Construction site outcome, completion of the construction project Performance study Fundamentals of decision theory Decision problems and processes Decision algorithms Methods of operations research: decision trees/flow- | | Winter | IMMO 1 | Decision making techniques Real Estate Management | Prof. Bogacki Prof. Krudewig | 2,5 | SL
PL | Cost-Benefit-analysis, Utility analysis, Analytic Hierarchy Process, Outranking methods Decision making project Principles of Real Estate Management: development, tasks and functions | | | | | | | | Project development: from the initial idea to the decision Determining procedures Real estate investment and property financing as a | PL – Examination (written) according to § 7 SL – Course achievement according to § 8.4 CP – Credit Points **Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz** | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL)
or/and Project
achievement (SL) | Content | |----------|-----------|------------------------|----------------|----|--|---| | | | | | | | precondition to realize a project • | | Winter | IMMO 2 | Real Estate Management | Prof. Krudewig | 5 | PL | Real estate marketing to avoid vacancy Historical development of the facility management Facility management Assessment procedures of real estate investments Building redevelopment taking account also historic buildings Regeneration of brownfield sites | ### Focus on façade /energy | Winter | EPLA | Sustainable Construction and energy-efficient | Prof. Schuchardt | 5 | PL | • | Reprocessing the basics of stationary heat convection and humidity flow | |--------|------|---|------------------|---|----|---|--| | | | building design | | | | • | Detection methods for current standardization | | | | | | | | • | Computer Exercises with transient calculation programs for heat and humidity | | | | | | | | • | Computer Exercises with current programs for lighting design | | | | | | | | • | Computer Exercises with current programs for the heat retention | | | | | | | | • | Basics of modeling calculation | | | | | | | | • | Process parameter of the modeling calculation | | | | | | | | • | Computer Exercises with modeling programs | PL – Examination (written) according to § 7 SL – Course achievement according to § 8.4 CP – Credit Points **Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz** | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL)
or/and Project
achievement (SL) | Content | |----------|-----------|-----------------------|------------------|----|--|---| | | | | | | | Building physicals basics: lighting (astronomical data and
meteorological factors Daylight factor | | Summer | FASA | Façade | Prof. Schuchardt | 5 | PL | Construction specifications and applied building physical and statical calculation methods of | | | | | | | | Cold façade, warm façade, cold/warm façade and membrane façade a) Mullion-transom system and construction methods derived from these; unitised-,box, modular system façade, double moulding, pit and corridor fronts b) Surface structure and curtain wall – thin-walled façade panel, thin-walled front elements and membranes c) Glass construction d) Material combination for constructions with load bearing function – sandwich-plates – prefabricated steel elements- and alum sandwich elements | ### **Focus on Structural Engineering** | Winter | BRAND | Structural Fire Protection | N.N. | 5 | SL | • | Basics of Planning of Fire Protection in buildings | |--------|-------|----------------------------|------|---|----|---|---| | | | | | | | | according to Model Building Regulations | | | | | | | | • | Fire Prevention Planning | | | | | | | | • | Methods for predicting time to incapacitation and death | PL – Examination (written) according to § 7 SL – Course achievement according to § 8.4 CP – Credit Points **Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz** | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL)
or/and Project
achievement (SL) | Content | |-------------------|-----------|---|-----------------|----|--|---| | | | | | | | of fires for use in fire safety engineering calculations Physiology and toxicology of fire effluent component, Residual load capacity after extinguish fire, structural components to fire exposure | | Summer | BTEC 2 | Advanced Study of
Concrete Technology | Prof. Breitbach | 5 | PL | advanced knowledge of concrete special concretes and cement based materials dealing with monitoring classes ÜK 2 and 3 (DIN 1045-3ÜK) lightweight concrete heavy concrete high performance concrete mortar and grout applications exposed concrete | | Winter | BFBA | Concrete Construction | Prof. Breitbach | 5 | PL | advanced knowledge of concrete special concretes and cement based materials dealing with monitoring classes ÜK 2 and 3 (DIN 1045-3ÜK) lightweight concrete heavy concrete high performance concrete grout exposed concrete | | Summer/
Winter | BSIB-3 | Protection and
Maintenance of Concrete
Building Parts | Prof. Breitbach | 5 | SL and PL | advanced concrete technology skills damage mechanisms concrete and steel corrosion | PL – Examination (written) according to § 7 SL – Course achievement according to § 8.4 CP – Credit Points **Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz** | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL)
or/and Project
achievement (SL) | Content | |----------|-----------|--|---------------------------|----|--|--| | Winter | BRÜB | Structural Design of Bridges Finite Element Method – | Prof. Ibach Prof. Zeitler | 5 | SL and PL | causes of cracks and methods of rehabilitation construction stage analysis chemical and physical test methods forecasting methods repair concept repair methods materials and repair systems special solutions regulations, state of the art, trends Structures for bridges, and the static modelling Loads on footbridges and road bridges (Eurocodes) Construction methods introduction to the finite element method | | Ville | | Application | Tron Zeidel |) | | basics for the application in structural design linear and nonlinear analyses modelling of 2D- and 3D- structures | | Winter | HOLZ 2 | Structural Design of Timber
Constructions 2 | Prof. Göckel | 5 | SL and PL | Halls, footbridges and towers in timber construction Rigid and soft connections in frame structures 2nd order and lateral torsional buckling of timber elements Strengthening of timber elements with glued-in rods and screws | | | HOLZ 3 | Structural Design of Timber
Constructions 3 | Prof. Göckel | 5 | SL and PL | Timber framework and solid timber constructions Design of plate elements, shear walls and shell structures in timber construction | PL – Examination (written) according to $\S\ 7$ SL – Course achievement according to § 8.4 CP – Credit Points **Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz** | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL) or/and Project achievement (SL) | Content | |----------|-----------|------------------------------|-----------------|----|--|---| | | | | | | | Timber concrete composite elements Vibrations of timber beams and slabs | | Summer | NABA | Sustainable Building 1 | Prof. Breitbach | 5 | PL | planning principles for sustainable building energy-optimized construction in ecological building protection and repair refurbishment requirements of building materials and construction administration health, comfort, room quality energy evaluation criteria building certification | | Winter | NABA 2 | Sustainable Building 2 | Prof. Zerwas | 5 | PL | basics of sustainable construction Certification System DGNB life cycle assessment and life cycle costs Basics HOAI and other performance books Design principles of sustainable buildings Integration of a current design and planning thread Cooperation with architects | | Summer | STAHL 3 | Structural Design of Steel 3 | Prof. Ibach | 5 | SL and PL | Buckling of steel plates Fatigue design | | Winter | STAHL 4 | Structural Design of Steel 4 | Prof. Ibach | 5 | SL and PL | Design of steel towers and shell buckling masts Design of shell flanges Foundation of towers | PL – Examination (written) according to § 7 SL – Course achievement according to § 8.4 CP – Credit Points **Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz** | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL) or/and Project achievement (SL) | Content | |----------|-----------|---|---------------|----|--|---| | Summer | STBB 4 | Structural Design of
Reinforced Concrete 4 | Prof. Zeitler | 5 | SL and PL | Design of cable structures Design of hollow profiles serviceability limit states for RC structures bracing of buildings strut and tie modelling in RC structures design of RC flat slabs | | Winter | SPAN | Structural Design of
Prestressed Concrete | Prof. Zeitler | 5 | SL and PL | principle of prestressed concrete serviceability limit states for prestressed structures ultimate limit states for prestressed structures short-term and long-term losses in prestress | | Winter | STAT 5 | Structural Analysis 5 | Prof. Hofmann | 5 | PL | basics of elastic foundation for statically undetermined structures basics of structural dynamics for statically undetermined multi mass systems | | Winter | STAT 6 | Structural Analysis 6 | Prof. Hofmann | 5 | PL | geometrically nonlinear structural analysis (linearized theory of second order) material nonlinear structural analysis (yield hinge theory of first order) | | Summer | DYNA | Dynamics | Prof. Laubach | 5 | PL | Kinematics and kinetics Basics of dynamic behaviour of single mass systems Wind loading for vibrating structures Earthquake loads | | Summer | VERB-1 | Structural Design of Steel-
Concrete Composite 1 | Prof. Ibach | 5 | SL and PL | material properties and typical cross sections plastic behaviour of composite structures Plates, Columns and Beams | PL – Examination (written) according to § 7 SL – Course achievement according to § 8.4 CP – Credit Points Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL)
or/and Project
achievement (SL) | Content | |----------|-----------|---|-------------------------------|----|--|---| | Winter | VERB-2 | Structural Design of Steel-
Concrete Composite 2 | Prof. Ibach | 5 | SL and PL | Headed Studs material properties and typical cross sections elastic behavior of composite beams | | | | | | | | Creep and Shrinkage Lateral Torsional Buckling | | Summer | ENVE | Design and Planning of Bridges and Earth Retaining Structures | Prof. Laubach | 5 | PL | Systematic review of road and railway bridges Systematic review of earth retaining structures Boundary conditions and details for planning Homework: planning of a road bridge | | Winter | ВВНО | Structural Design of Existing Buildings | Prof. Laubach | 5 | PL | Review of historical steel, timber and concrete constructions Introduction in historical building codes Existing reserves of load bearing capacity Strengthening of load bearing capacity | | Winter | INPL | Integral Planning | Prof. Laubach
Prof. Zerwas | 5 | PL | Common Planning of a realistic project Cooperation in a team of architects, structural engineers and building physics Homework: preliminary structural or building physics design Joining the VDI (The Association of German Engineers) students competition | # Focus on Planning, transport and water | Winte | er ASPT | Asphalt technology | Prof. Fischer | 5 | SL and PL | Advanced knowledge of asphalt mixtures | |---------|----------|--------------------|---------------|---|------------|--| | VVIIICE | 51 A31 | Aspiral technology | FIOI. HISCHEI | 5 | JE allu FE | Advanced knowledge of aspiral mixtures | PL – Examination (written) according to § 7 SL – Course achievement according to § 8.4 CP – Credit Points **Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz** | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL) or/and Project achievement (SL) | Content | |----------|-----------|--|----------------------|----|--|---| | Summer | EICD 2 | Doily an construction 2 | Drof | | CL and DI | General basis of bituminous building materials Testing methods and requirements of aggregates and filler in asphalt mixtures Composition and production of bitumen Production of asphalt, components and functionality of a mixing facility Recycling of asphalt, asphalt mix and testing methods of asphalt Practice examples | | Summer | EISB-2 | Railway construction 2 | Prof.
Schoonbrood | 5 | SL and PL | Basics: rules and regulations Design, planning and engineering of tracks, railway stations and related facilities Safety systems, signaling, rail-road crossings State of the art concerning trains and railway operation | | Winter | FLPB | Airport Planning | Prof.
Schoonbrood | 5 | PL | Basics of airport planning Organization of airports and airport networks Specific planning of basic infrastructure and related facilities Operation of airports | | Winter | GIS | Geographical information systems | Prof. Bogacki | 5 | PL | Introduction to ArcGISPractical GIS project | | Summer | GVPL | Freight Traffic Planning and Logistics | Prof.
Schonbrood | 5 | PL | Basics of freight transport, forecasting Infrastructure, networks, hubs, main corridors Modalities, modal shift, intermodal transport Facilities, basics for planning and designing | PL – Examination (written) according to § 7 SL – Course achievement according to § 8.4 CP – Credit Points **Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz** | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL)
or/and Project
achievement (SL) | Content | |----------|-----------|--|---------------------|----|--|---| | Summer | HYGE | Introduction to Water
Hydrology | LB | 5 | PL | Water cycle (globally and locally), water infiltration, groundwater recharge Special importance of hydrology and groundwater as fundamental element of water cycle Groundwater unearthing, porous medium and aquifer (Pore space, porosity, Karst aquifer, storage density, water and mass transfer Darcy's law, groundwater flow and equitations Pump trials and calculation of hydraulic permeability Well hydraulic Mass transfer Groundwater model: for example MODFLOW (3D) finite-difference groundwater model | | Winter | ÖPNV | Urban Public Transport | Prof.
Schonbrood | 5 | PL | Basics of urban public transport Modes, infrastructure, networks, hubs Facilities and basics for planning and designing Operation of UPT | | Winter | LÄRM | Emission protection | Prof. Zerwas | 5 | SL and PL | Determination of relevant noise sources (calculating and measuring) Calculation of outdoor noise propagation (manual and computerized calculations) Design of noise protection and noise-reducing measures Determination of the relevant exterior noise level Calculate the minimum sound insulation of buildings | | Winter | SIWW 2 | Urban Water Management
/Waste Water | Prof. Ziegler | 5 | SL and PL | Wastewater analytics | PL – Examination (written) according to § 7 SL – Course achievement according to § 8.4 CP – Credit Points **Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz** | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL) or/and Project achievement (SL) | Content | |----------|-----------|------------------------------------|-----------------|----|--|--| | | | Management 2 | | | | Wastewater treatment including energy and nutrient aspects Design of wastewater treatment plants Alternative sanitation technologies | | Summer | STAP | Urban Planning | Prof. Mutschler | 5 | PL | Urban Construction History/Created guidelines for urban development Early History/Antiquity Mediaeval Architecture Ideal city in the renaissance and baroque residence city Classicism and industrialization in the 19th century Pre-war period (urban development, fascism) Post-war period (urbanity through density, sustainable planning) Current tasks: conversion, urban redevelopment, megacities Planning methodology: review, strength-weaknessesanalysis, history of urban planning, designs Urban functions: residential construction, industry and retail, infrastructure/common needs | | Summer | STEB | Road maintenance and road services | Prof. Fischer | 5 | SL and PL | Advanced knowledge of different concepts for the maintenance applied on asphalt roads and concrete roads based on current regulations Handle and create all kinds of conditions and analysis data throughout the entire process of road condition management Visual condition assessment | PL – Examination (written) according to $\S\ 7$ SL – Course achievement according to § 8.4 CP – Credit Points **Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz** | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL) or/and Project achievement (SL) | Content | |----------|-----------|--|----------------------|----|--|---| | | | | | | | Technical conservation measures for asphalt and concrete traffic surfaces | | Winter | UMWT | Environmental Engineering | Prof.
Kirschbauer | 5 | SL and PL | Collection and transport of wasteWaste disposal sitesWaste incineration | | Summer | WVER | Hydraulic Modelling
Methods | Prof.
Kirschbauer | 5 | PL | Measuring of water levels and of flow velocities Determination of flow rates Estimation of flow-pressure force onto buildings and building parts Calibration of calculation parameters during flow/pressure of barrage and sluice gates Flooding of water wheel and the possible impacts for fish Efficiency rates of water wheels | | Summer | WASW 2 | Hydraulic Construction
/Water Engineering 2 | Prof. Ziegler | 5 | SL and PL | Flood management Design of retention dams Hydrograph and runoff Hydropower: power, turbines | | Winter | NAM | Precipitation Runoff
Modeling | Prof. Wernecke | 5 | PL | Hydrologic cycle and its components Principles, subject and objective of Precipitation Runoff Modeling Modular-design modeling Simulation Analysis (statistical, graphical) Application of Precipitation Runoff Modelling | | Summer | WMDC | Water Management in | Prof. Ziegler | 5 | PL | International water problems | PL – Examination (written) according to § 7 SL – Course achievement according to § 8.4 CP – Credit Points **Study Guide: Program of Master Degree in Civil Engineering at HS Koblenz** | Semester | Modulcode | Description of Module | Responsible | СР | Examination (PL)
or/and Project
achievement (SL) | Content | |----------|-----------|--|----------------|----|--|--| | Summer | FREI | developing countries Urban space - latitude | Prof. Kirchner | 5 | PL | Project planning in development cooperation Access to drinking water and sanitation Water utility management Integrated water resource management Water information systems Water and Climate Change Transboundary water management History of place, inner city location, environing construction and structure typologies Spatial structures and spatial sequence Use of public open space and its sides Leisure options, social control Fittings and design Open space design | PL – Examination (written) according to $\S\ 7$ SL – Course achievement according to § 8.4 CP – Credit Points